Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 32(26): 3187-97, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24736001

RESUMO

The upsurge of West Nile virus (WNV) human infections in 2012 suggests that the US can expect periodic WNV outbreaks in the future. Availability of safe and effective vaccines against WNV in endemic areas, particularly for aging populations that are at high risk of West Nile neuroinvasive disease (WNND), could be beneficial. WN/DEN4Δ30 is a live, attenuated chimeric vaccine against WNV produced by replacement of the genes encoding the pre-membrane and envelope protein genes of the vaccine virus against dengue virus type 4 (DEN4Δ30) with corresponding sequences derived from a wild type WNV. Following intrathalamic inoculation of nonhuman primates (NHPs), a comprehensive neuropathogenesis study was performed and neurovirulence of WN/DEN4Δ30 vaccine candidate was compared to that of two parental viruses (i.e., WNV and DEN4Δ30), as well as to that of an attenuated flavivirus surrogate reference (i.e., yellow fever YF 17D). Clinical and virological data, as well as results of a semi-quantitative histopathological analysis, demonstrated that WN/DEN4Δ30 vaccine is highly attenuated for the central nervous system (CNS) of NHPs in comparison to a wild type WNV. Importantly, based on the virus replicative ability in the CNS of NHPs and the degree of induced histopathological changes, the level of neuroattenuation of WN/DEN4Δ30 vaccine was similar to that of YF 17D, and therefore within an acceptable range. In addition, we show that the DEN4Δ30 vaccine tested in this study also has a low neurovirulence profile. In summary, our results demonstrate a high level of neuroattenuation of two vaccine candidates, WN/DEN4Δ30 and DEN4Δ30. We also show here a remarkable sensitivity of our WNV-NY99 NHP model, as well as striking resemblance of the observed neuropathology to that seen in human WNND. These results support the use of this NHP model for translational studies of WNV neuropathogenesis and/or testing the effectiveness of vaccines and therapeutic approaches.


Assuntos
Sistema Nervoso Central/virologia , Vacinas Virais/imunologia , Febre do Nilo Ocidental/patologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Sistema Nervoso Central/patologia , Macaca mulatta , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Viremia/patologia , Replicação Viral , Febre do Nilo Ocidental/prevenção & controle , Vírus do Nilo Ocidental/patogenicidade , Vírus do Nilo Ocidental/fisiologia
2.
J Am Assoc Lab Anim Sci ; 51(3): 333-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22776191

RESUMO

In the interval between the publication of the seventh and eighth editions of the Guide for the Care and Use of Laboratory Animals (Guide), much has changed with regard to the regulation and funding of highly pathogenic biologic agents and toxins (Select Agents). Funding of research involving highly pathogenic agents has increased dramatically during this time, thus increasing the demand for facilities capable of supporting this work. The eighth edition of the Guide briefly mentions Select Agents and provides a limited set of references. Here we provide some background information regarding the relevant laws and regulations, as well as an overview of the programmatic requirements pertaining to the use of Select Agents, with a focus on use in animals.


Assuntos
Animais de Laboratório , Produtos Biológicos , Guias como Assunto , Medidas de Segurança/legislação & jurisprudência , Toxinas Biológicas , Animais , Regulamentação Governamental , Humanos , Estados Unidos , United States Department of Agriculture/legislação & jurisprudência , United States Dept. of Health and Human Services/legislação & jurisprudência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...